
 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 Simplicity Embed™

Reference Manual
Version 1.0

March 11, 2024

Copyright © 2024 Mifo Communications. All rights reserved.

www.SimplicityWebTools.com

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Contents
Overview ... 3

Features... 3

Architecture .. 4

Configuration File .. 5

devKey ... 5

licenseKey .. 6

widgetHeight ... 7

widgetWidth ... 8

widgetMargin .. 8

widgetBgColor ... 8

widgetPosition .. 8

widgetOverlay ... 9

widgetModal ... 9

widgetUrl ... 9

widgetAttributes ... 11

Sample Widget App ... 12

Getting Started .. 12

Vanilla JavaScript Example .. 13

Concepts demonstrated: ... 16

Angular Example (standalone) .. 20

The Easiest Way to Start .. 20

Concepts Demonstrated ... 24

React Example ... 29

Concepts Demonstrated ... 33

Vue Example .. 38

Concepts Demonstrated ... 40

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Overview
Simplicity Embed™ is a robust web component that lets you easily create universally

embeddable web widgets with any front-end and/or backend technology that you work with.

The component solves the problem of integration, isolation, and communication.

For example, a mini application built in React can be distributed to work in any web page or

even another application built in another framework like Vue or Angular.

Allow others to simply integrate your web apps built with Angular, ASP.NET, Backbone, Django,

Ember, Java, JQuery, Mithril, Node, PHP, React, Ruby, Svelte, Vanilla JS, Vue and more!

Any web application can be turned into an embeddable widget
Any frontend framework can be used
Any backend technology can be used

Features
• The Simplicity Embed™ solves many problems with integrating a web application into

another web page or another web application built with another framework.

• Code Isolation

• CSS Isolation

• Custom Command Communications to and from the host page to your widget/app

• Resizing As Host Page Resizes

• Inline or Overlay Modes that Can be Changed at Runtime

• Modal or nonmodal overlay mode

• Custom attributes can be defined that get passed to your widget/app

• Configuration file allows for A/B testing, dynamic update of widget/app displayed

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Architecture

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Configuration File
The configuration file contains initial setup parameters for the component including

appearance, position and the URL of the widget/application. It is referenced in the Simplicity

Embed web component as a fully qualified URL. This gives you the ability to control the widget

remotely if that is what you need to do (e.g., A/B testing, changing the referenced widget/app

based on time/day, etc.).

Here is a sample configuration file:

{

 "devKey": "XXXXXXXXXXX",

 "licenseKey": "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",

 "widgetHeight": "fit-content",

 "widgetWidth": "fit-content",

 "widgetMargin": "10px",

 "widgetBgColor": "transparent",

 "widgetPosition": "br",

 "widgetOverlay": "overlay",

 "widgetModal": "nonmodal",

 "widgetUrl": "http://localhost:5500/index.html",

 "widgetAttributes": "id,data-icon,count,

 data-color,

 data-background,

 data-heading,

 data-subhead"

 }

The following properties and their possible values are:

devKey
The Simplicity Embed™ web component requires a valid developer key or a valid license key to

properly function. A developer key is either a free 30 day trial or a paid longer period

developer's license. The developer key is only required if the widgetUrl property value is

localhost or 127.0.0.1 (note: it IS NOT based on the domain of the page hosting the Simplicity

Embed™ component).

A developer key can be obtained at www.SimplicityWebTools.com.

If an invalid developer key is in the devKey property field the component will display the

following:

http://www.simplicitywebtools.com/

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

licenseKey
For production deployments (i.e., where the widget referenced by the Simplicity Embed web

component is not hosted at localhost or 127.0.0.1) a valid key needs to be entered for the

licenseKey property value. (note: the license key IS NOT based on the domain of the page

hosting the Simplicity Embed™ component but instead the domain of where the widget is

hosted).

A license key can be purchased at www.SimplicityWebTools.com.

If a license key is purchased for mydomain.com it is also valid for www.mydomain.com. A key

purchased for a specific sub-domain (e.g., xyz.mydomain.com) will only work for that

subdomain. Wildcard keys are also available that would work with any subdomain on a

particular domain.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

If an invalid developer key is in the devKey property field the component will display the

following:

widgetHeight
Any valid CSS value for height will work for this parameter. It is best to match this to the

specific height of your widget. In the case of utilizing inline mode you will typically use 100% so

the component matches the height of the container.

Keep in mind that the component renders overlayed on the container page content. So if your

widget is 200px x 200px you do not want to define a height larger than that.

The exception to the above would be if you for example have an animation of your widget. In

that scenario you would define a larger area that could accommodate the path of the

animation and then when the animation stops (assuming it does) send a command to fix the

height to fit your widget.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

widgetWidth
Any valid CSS value for width will work for this parameter. It is best to match this to the specific

width of your widget. In the case of utilizing inline mode you will typically use 100% so the

component matches the width of the container.

Keep in mind that the component renders overlayed on the container page content. So if your

widget is 200px x 200px you do not want to define a width larger than that.

The exception to the above would be if you for example have an animation of your widget. In

that scenario you would define a larger area that could accommodate the path of the

animation and then when the animation stops (assuming it does) send a command to fix the

width to fit your widget.

widgetMargin
Any valid CSS value for margin. This adds an outside margin around the widget.

widgetBgColor
The architecture of the Simplicity Embed™ component is that there is an overlay container

injected into the host page. This parameter sets the background color of that. Typically you

would be using this when the widget is acting in a modal mode.

This value can be any valid CSS value for color including (if you wish) alpha settings for

transparency.

widgetPosition
This defines the position of the widget when in overlay mode. There are nine possible values

for this:

tl – position the widget in the TOP LEFT of the view port

tm – position the widget in the TOP MIDDLE of the view port

tr – position the widget in the TOP RIGHT of the view port

ml – position the widget in the MIDDLE LEFT of the view port

mm – position the widget in the MIDDLE MIDDLE (i.e., center) of the view port

mr – position the widget in the MIDDLE RIGHT of the view port

bl – position the widget in the BOTTOM LEFT of the view port

bm – position the widget in the BOTTOM MIDDLE of the view port

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

br – position the widget in the BOTTOM RIGHT of the view port

widgetOverlay
There are two modes that the Simplicity Embed™ web component can operate regarding how

the component integrates into the hosting page. The two modes are that are supported by the

component:

• overlay

• inline

NOTE: If widgetOverlay is set to "inlne" widgetPreload MUST be present and set to "yes".

When this property is set to overlay the component and the widget container sits on top of the

hosting page. This is typically what you would see for example in a chat widget.

When this property is set to inline the component and container stay contained within the

parent element of where the Simplicity Embed™ web component is placed in the page.

widgetPreload
widgetPreload should generally be set to "yes". In some cases if the host page is not showing

the widget immediately upon load, you may wish to delay the loading of the widget until it is

displayed.

If widgetOverlay is set to "inlne" widgetPreload MUST be present and set to "yes".

widgetModal
The Simplicity Embed™ web component can operate in a modal or nonmodal mode. If it is

operating in a modal mode the user cannot access page content versus nonmodal mode where

the page content behind your widget can be accessed.

The two possible values for this property are:

modal – do not allow access to page content

nonmodal –allow access to page content

widgetUrl
This is the fully qualified URL of your widget/app. For production implementations the domain

that the license key is generated for must match this domain.

If you have not obtained a deployment license key your widget will need to be hosted at

localhost or 127.0.0.1.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

widgetAttributes
You can define custom attributes that the end consumer can add to the Simplicity Embed™

web component to send configuration information to your widget. You can also include

standard HTML attributes if it makes sense for that info to be passed to your widget. It is

strongly recommended that one of the attributes you pass is "id". This gets used internally in

the Simplicity Embed™ web component to differentiate instances when there is more than one

implemented on a page.

Although it is common practice to use "data-*" for custom attributes, you can also use any

unreserved string as an attribute and that will work too.

Implementing the Component

When a user hosts the Simplicity Embed™ component in their web page or app they place it

just like any other HTML element:

<simplicity-embed

 setup="https://mifo.com/config.json"

 id="se1"

 ca1="val1"

 ca2="val2"

 ca3="val3"

 >

 </simplicity-embed>

The above shows the mandatory setup attribute which pulls in a configuration file from the

fully qualified URL in the value. The id attribute is necessary if you want to allow two or more

instances of the Simplicity Embed™ component on a single page.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Sample Widget App
We have made available a vanilla JavaScript widget example that is simple in concept but is

designed to demonstrate all the communication interfaces between the Simplicity Embed™

web component, your widget and the hosting page.

This sample can be downloaded at:

https://www.simplicitywebtools.com/Downloads

Getting Started
The Simplicity Embed™ web component requires a trial key or a developer key to develop with.

A free trial key is available with no credit card information needed. Go to:

https://www.SimplicityWebTools

In addition to the web component, we have a simplified widget sample that helps you learn

how to develop a widget that communicates to and from a host page through the Simplicity

Embed™ web component.

Each example references this sample widget. The sample widget code can be obtained at:

We have four different versions of the component available. Your license key works with all

versions. The four available are:

• Vanilla JavaScript (actually works anywhere)

• React Wrapped

• Vue Wrapped

• Angular Wrapped

The version you use is based on the page/app that is hosting the SimplicityEmbed™ web

component (<simplicity-embed></simplicity-embed>). If you are distributing a widget for

general use on a web page, you would most likely select the vanilla JavaScript version. If you

are using the Simplicity Embed™ to integrate a separate framework or web app into another

framework, you would choose the version appropriate for where you are integrating into.

https://www.simplicitywebtools/

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The component can be obtained from NPM or CDN:

For vanilla JavaScript:

via NPM

npm install @simplicitywebtools/simplicity-embed

via CDN

<script type="module"

src="https://unpkg.com/@simplicitywebtools/simplicity-

embed/dist/simplicity-embed/simplicity-embed.esm.js"></script>

Vanilla JavaScript Example
The Simplicity Embed™ web component allows you to embed widgets or pages built in just

about any framework into any HTML web page.

For this example we use a basic Bootstrap template example and add the Simplicity Embed™

web component to it along with some buttons and scripting to demonstrate various

functionality.

The Bootstrap example we use is located at:

https://getbootstrap.com/docs/5.3/examples/product/

We have a public repo available that you can download to view this example. The repo is

located at:

https://github.com/mfoitzik/simplicity-embed-vanillajs-example

You can clone the repo by doing the following:

git clone https://github.com/mfoitzik/simplicity-embed-vanillajs-example.git

open index.html with Live Server or your dev server of choice

In the body of the index.html file we add buttons and the Simplicity Embed™ web component:

<div class="col-md-5 p-lg-5 mx-auto my-5">

 <h1 class="display-4 fw-normal">Simplicity Embed™ Basic Example</h1>

 <p class="lead fw-normal">This is a basic Bootstrap example page that has a

Simplicity Embed™ web component used in it.

 Go to www.simplicitywebtools.com to find out more.

 </p>

https://github.com/mfoitzik/simplicity-embed-vanillajs-example
https://github.com/mfoitzik/simplicity-embed-vanillajs-example.git

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 <div>

 <button type="button" id="btnOpen">Open</button>

 </div>

 <div>

 <button type="button" id="btnClose">Close</button>

 </div>

 <div>

 <button type="button" id="btnSendCommand">Send Command</button>

 </div>

 <div>

 <button type="button" id="btnChangeConfig">Change Config</button>

 </div>

 </div>

<simplicity-embed

 setup="http://localhost:5500/config.json"

 id="simplicity"

 data-icon="heart"

 data-count="7"

 data-color="rgb(255,0,0)"

 data-background="rgb(0,240,240)"

 data-heading="Rate This Product"

 />

At the bottom of the page, we pull in the Simplicity Embed™ scripting from the CDN and add

scripting to handle the button events and the sbnotify event.

<script type="module" src="https://unpkg.com/@simplicitywebtools/simplicity-

embed@1.1.12/dist/simplicity-embed/simplicity-embed.esm.js"></script>

 <script>

 if (document.readyState === "loading") {

 document.addEventListener("DOMContentLoaded", init);

 } else {

 init();

 }

 function init() {

 const openBtn = document.getElementById("btnOpen");

 const closeBtn = document.getElementById("btnClose");

 const sendCommandBtn = document.getElementById("btnSendCommand");

 const changeConfigBtn = document.getElementById("btnChangeConfig");

 const seElement = document.getElementById("simplicity");

 openBtn.addEventListener("click", function() {

 seElement.open();

 });

 closeBtn.addEventListener("click", function() {

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 seElement.close();

 });

 sendCommandBtn.addEventListener("click", function() {

 const sendObj = {

 "action": "spin"

 }

 seElement.sendMessage(sendObj);

 });

 changeConfigBtn.addEventListener("click", function() {

 seElement.setup = "http://localhost:5500/config2.json";

 });

 seElement.addEventListener("sbnotify", function(customEvent) {

 console.log("I received a notify event");

 console.log(customEvent.detail);

 })

 }

 </script>

After adding the above and running index.html in a dev server you should see:

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Clicking in the body of the widget will show:

Concepts demonstrated:
There are three methods available to the Simplicity Embed™ web component's host: open,

close, and sendMessage. Clicking the open or close button in the sample above simply opens

or closes the component. The sendMessage method is a way for your widget to accept custom

commands and information from the web component's host. In the case of this demo the

widget example accepts an object with an "action" property with a value "spin". This object

can be anything you want.

The "Change Config" button changes the value of the 'seSetup" variable that is bound to the

"setup" property on the Simplicity Embed™ component. The component has a watcher on that

attribute which will reload the new configuration file and determine any custom attributes that

need to be passed to the defined widget in that configuration file.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The widget can communicate to the host page and the Simplicity Embed™ web component as

well.

Inside the example vanilla JavaScript widget example the event handler for the "SUBMIT"

button sends a postMessage to its parent's window. The Simplicity Embed™ web component

receives this message and as long as the object sent does not have a reserved property name,

it passes the object as an "sbnotify" event to the host page.

In the case of the example widget the submit button gathers the rating selected as well as the

text placed in the text box and sends it with the object.

Here is the code in the widget:

submitBtn.addEventListener("click", function(e) {

 e.stopPropagation();

 const getMessage = document.getElementById("message");

 let outMessage = "";

 if (getMessage) {

 outMessage = getMessage.value;

 }

 console.log(chosenIcons);

 console.log(outMessage);

 let outRating = 0

 for (let x = 0; x < chosenIcons.length; x++) {

 if (chosenIcons[x] == true) {

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 outRating++;

 }

 }

 let sendObject = {

 "command": "rating",

 "rating": outRating,

 "maxRating": chosenIcons.length,

 "message": outMessage,

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

Inside the host page the handler for sbnotify snippet is here:

handleNotify(event: Event) {

 const customEvent = event as CustomEvent<any>;

 console.log("I received a notify event");

 console.log(customEvent.detail);

 }

The received object (shown in the console log) will look like this:

{

 "command": "rating",

 "rating": 6,

 "maxRating": 7,

 "message": "Because this page is great!",

 "id": "simplicity"

}

Sending the info request to the Simplicity Embed™ web component requires you to do a

postMessage to the widget's parent window with an object that contains the property "cmd"

with a value "info" as shown here:

infoBtn.addEventListener("click", function(e) {

 let sendObject = {

 "cmd": "info",

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The Simplicity Embed™ web component will respond by doing a postMessage that you can

listen for that will contain an object with a variety of information about the Simplicity Embed™

web component's host such as parent dimensions, page dimensions, host, etc.

You need to have an event listener defined in your widget that listens for the message event on

your window object as shown here:

//listen for component host messages/commands

 window.addEventListener("message", (event) => {

 if (event.data.action) {

 switch(event.data.action) {

 case "spin":

 init();

 const icon = document.getElementById("icon");

 icon.classList.remove("spin");

 const myParent = icon.closest("div");

 const inHTML = myParent.innerHTML;

 myParent.innerHTML = inHTML;

 const icon2 = document.getElementById("icon");

 icon2.classList.add("spin");

 break;

 }

 }

 if (event.data.cmd) {

 if (event.data.cmd == "info") {

 console.log("INFO RECEIVED");

 console.log(event.data);

 }

 }

 });

An example of a returned object from the info request is shown here:

{

 "cmd": "info",

 "info": {

 "tagName": "MAIN",

 "clientHeight": 496,

 "clientWidth": 944,

 "paddingTop": "",

 "paddingRight": "",

 "paddingBottom": "",

 "paddingLeft": "",

 "htmlHeight": 668,

 "htmlWidth": 960,

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 "href": "http://localhost:61323/",

 "host": "localhost:61323",

 "hostname": "localhost",

 "pathname": "/"

 }

}

You can use this information to position your widget, animate it, limit it to specific hosts, etc.

Angular Example (standalone)
Before starting, obtain a trial dev key (available for free without a credit card) or a dev

license from https://www.SimplicityWebTools.com.

The Easiest Way to Start
The instructions that follow are just a guideline for "start from scratch" projects. To get familiar

with Simplicity Embed™ we recommend cloning or downloading the example project and

studying the code in there.

To get the Vanilla JavaScript example project go to:

https://github.com/mfoitzik/simplicity-embed-angular-standalone-example

You can clone the repo by doing the following:

git clone https://github.com/mfoitzik/simplicity-embed-angular-standalone-example.git
open index.html with Live Server or your dev server of choice

npm install @simplicitywebtools/simplicity-embed-angular

Download the sample vanilla JavaScript widget from the following location:

https://www.SimplicityWebTools.com/SimplicityEmbedSampleDownloads#samplewidget

Open the sample widget folder in Visual Studio Code and run the index.html file in Live Server

(or whatever dev server you have configured in your environment). Make note of the

address/port that the page launches in (typically http://localhost:5500). This widget sample

contains two files that will get utilized by the project. One is a configuration file that is

referenced by the Simplicity Embed™ component (config.json) and the other is the actual

widget (index.html).

https://www.simplicitywebtools.com/
https://github.com/mfoitzik/simplicity-embed-angular-standalone-example
https://github.com/mfoitzik/simplicity-embed-angular-standalone-example.git
https://www.simplicitywebtools.com/SimplicityEmbedSampleDownloads#samplewidget
http://localhost:5500/

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

PLEASE NOTE: The trial key and developer license key only work with the 'localhost' domain

or 127.0.0.1 IP address.

The simplicity-embed-angular component has a wrapper that can be used in an Angular

standalone component as well as a module.

Standalone (default as of Angular 17)

For an example of integrating the Simplicity Embed™ web component in an Angular module

component project reference the following repo:

https://github.com/mfoitzik/simplicity-embed-angular-module-example

Create a new Angular project

ng new angular-standalone

accept all defaults

cd angular-standalone

Install the simplicity-embed-angular component:

npm install @simplicitywebtools/simplicity-embed-angular

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

In the src/app folder modify the app.component.ts file as follows:

src/app/app.component.ts

import { Component, OnInit } from '@angular/core';

import { CommonModule } from '@angular/common';

import { RouterOutlet } from '@angular/router';

import { SimplicityEmbed } from '@simplicitywebtools/simplicity-embed-angular';

@Component({

 selector: 'app-root',

 standalone: true,

 imports: [CommonModule, RouterOutlet, SimplicityEmbed],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

export class AppComponent implements OnInit {

 title = 'angular-standalone';

 seSetup = "http://localhost:5500/config.json";

 private sembed: SimplicityEmbed | null = null;

 openSimplicityEmbed() {

 this.sembed?.open();

 }

 closeSimplicityEmbed() {

 this.sembed?.close();

 }

 sendCommand() {

 const sendObj = {

 "action": "spin"

 }

 this.sembed?.sendMessage(sendObj);

 }

 changeConfig() {

 this.seSetup = "http://localhost:5500/config2.json";

 }

 handleNotify(event: Event) {

 const customEvent = event as CustomEvent<any>;

 console.log("I received a notify event");

 console.log(customEvent.detail);

 }

 ngOnInit() {

 this.sembed = document.getElementById("simplicity") as any;

 }

}

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

In the src/app/app.component.html file add the Simplicity Embed™ component as follows (it is

being inserted right above the closing </main> tag.

Also, in the src/app/app.component.html file add the following buttons under the

"Congratulations! Your app is running" line

src/app/app.component.html

 </div>

 <simplicity-embed

 [attr.setup]="seSetup"

 id="simplicity"

 data-icon="heart"

 data-count="7"

 data-color="rgb(245, 241, 5)"

 data-background="rgb(58,85,156)"

 data-heading="Rate Me!"

 (sbnotify) = "handleNotify($event)">

 </simplicity-embed>

</main>

Notice that attribute binding is only applied to the setup attribute. This is because the other attributes are

dynamically assigned and do not have listeners attached to them.

Also in: src/app/app.component.html

<p>Congratulations! Your app is running. 🎉</p>

 <div>

 <button type="button" (click)=openSimplicityEmbed()>Open</button>

 </div>

 <div>

 <button type="button" (click)=closeSimplicityEmbed()>Close</button>

 </div>

 <div>

 <button type="button" (click)=sendCommand()>Send Command</button>

 </div>

 <div>

 <button type="button" (click)=changeConfig()>Change Config</button>

 </div>

Run the project:

ng serve –open

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

You should see the following:

Concepts Demonstrated
There are three methods available to the Simplicity Embed™ web component's host: open,

close, and sendMessage. Clicking the open or close button in the sample above simply opens

or closes the component. The sendMessage method is a way for your widget to accept custom

commands and information from the web component's host. In the case of this demo the

widget example accepts an object with an "action" property with a value "spin". This object

can be anything you want.

The "Change Config" button changes the value of the 'seSetup" variable that is bound to the

"setup" property on the Simplicity Embed™ component. The component has a watcher on that

attribute which will reload the new configuration file and determine any custom attributes that

need to be passed to the defined widget in that configuration file.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The widget can communicate to the host page and the Simplicity Embed™ web component as

well.

Inside the example vanilla JavaScript widget example the event handler for the "SUBMIT"

button sends a postMessage to its parent's window. The Simplicity Embed™ web component

receives this message and as long as the object sent does not have a reserved property name,

it passes the object as an "sbnotify" event to the host page.

In the case of the example widget the submit button gathers the rating selected as well as the

text placed in the text box and sends it with the object.

Here is the code in the widget:

submitBtn.addEventListener("click", function(e) {

 e.stopPropagation();

 const getMessage = document.getElementById("message");

 let outMessage = "";

 if (getMessage) {

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 outMessage = getMessage.value;

 }

 console.log(chosenIcons);

 console.log(outMessage);

 let outRating = 0

 for (let x = 0; x < chosenIcons.length; x++) {

 if (chosenIcons[x] == true) {

 outRating++;

 }

 }

 let sendObject = {

 "command": "rating",

 "rating": outRating,

 "maxRating": chosenIcons.length,

 "message": outMessage,

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

Inside the host page the handler for sbnotify snippet is here:

handleNotify(event: Event) {

 const customEvent = event as CustomEvent<any>;

 console.log("I received a notify event");

 console.log(customEvent.detail);

 }

The received object (shown in the console log) will look like this:

{

 "command": "rating",

 "rating": 6,

 "maxRating": 7,

 "message": "Because this page is great!",

 "id": "simplicity"

}

Sending the info request to the Simplicity Embed™ web component requires you to do a

postMessage to the widget's parent window with an object that contains the property "cmd"

with a value "info" as shown here:

infoBtn.addEventListener("click", function(e) {

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 let sendObject = {

 "cmd": "info",

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

The Simplicity Embed™ web component will respond by doing a postMessage that you can

listen for that will contain an object with a variety of information about the Simplicity Embed™

web component's host such as parent dimensions, page dimensions, host, etc.

You need to have an event listener defined in your widget that listens for the message event on

your window object as shown here:

//listen for component host messages/commands

 window.addEventListener("message", (event) => {

 if (event.data.action) {

 switch(event.data.action) {

 case "spin":

 init();

 const icon = document.getElementById("icon");

 icon.classList.remove("spin");

 const myParent = icon.closest("div");

 const inHTML = myParent.innerHTML;

 myParent.innerHTML = inHTML;

 const icon2 = document.getElementById("icon");

 icon2.classList.add("spin");

 break;

 }

 }

 if (event.data.cmd) {

 if (event.data.cmd == "info") {

 console.log("INFO RECEIVED");

 console.log(event.data);

 }

 }

 });

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

An example of a returned object from the info request is shown here:

{

 "cmd": "info",

 "info": {

 "tagName": "MAIN",

 "clientHeight": 496,

 "clientWidth": 944,

 "paddingTop": "",

 "paddingRight": "",

 "paddingBottom": "",

 "paddingLeft": "",

 "htmlHeight": 668,

 "htmlWidth": 960,

 "href": "http://localhost:61323/",

 "host": "localhost:61323",

 "hostname": "localhost",

 "pathname": "/"

 }

}

You can use this information to position your widget, animate it, limit it to specific hosts, etc.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

React Example
This example uses a vanilla JavaScript widget to demonstrate embedding into a React project.

This is just to simplify the demonstration. In practical cases a widget built in any framework

could be integrated.

Download the sample vanilla JavaScript widget from the following location:

https://www.SimplicityWebTools.com/SimplicityEmbedSampleDownloads#samplewidget

Open the sample widget folder in Visual Studio Code and run the index.html file in Live Server

(or whatever dev server you have configured in your environment). Make note of the

address/port that the page launches in (typically http://localhost:5500). This widget sample

contains two files that will get utilized by the project. One is a configuration file that is

referenced by the Simplicity Embed™ component (config.json) and the other is the actual

widget (index.html).

Start a new React Project using vitejs

npm create vite@latest

For this example, we chose the following from the vitejs prompts:

Project name: ... simplicity-embed-react-example

Select a framework: » React

Select a variant: » TypeScript

Change to the project directory, npm install and run:

cd simplicity-embed-react-example

npm install

npm run dev

https://www.simplicitywebtools.com/SimplicityEmbedSampleDownloads#samplewidget
http://localhost:5500/

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Install the Simplicity Embed™ web component for React:

For React
npm install @simplicitywebtools/simplicity-embed-react

Modify the App.tsx file to import the Simplicity Embed™ web component, initialize it and use

the component in the page as follows:

(NOTE: Some buttons and handlers are added to demonstrate various communication paths

between the host page, Simplicity Embed™ web component and the widget.

src/App.tsx

import { useState, useRef } from 'react'

import reactLogo from './assets/react.svg'

import viteLogo from '/vite.svg'

import './App.css'

import { SimplicityEmbed, defineCustomElements } from '@simplicitywebtools/simplicity-embed-

react'

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

defineCustomElements();

function App() {

 const [count, setCount] = useState(0);

 const [seSetup, setSeSetup] = useState("http://localhost:5500/config.json");

 const seRef = useRef<HTMLSimplicityEmbedElement | null>(null);

 function openSimplicityEmbed() {

 if (seRef.current) {

 seRef.current.open();

 }

 }

 function closeSimplicityEmbed() {

 seRef.current?.close();

 }

 function sendCommand() {

 const sendObj = {

 "action": "spin"

 }

 seRef.current?.sendMessage(sendObj);

 }

 function changeConfig() {

 setSeSetup("http://localhost:5500/config2.json");

 }

 function handleSbNotify(event: CustomEvent) {

 console.log("I received a notify event");

 console.log(event.detail);

 }

 return (

 <>

 <div>

 </div>

 <h1>Vite + React</h1>

 <div className="card">

 <button onClick={() => setCount((count) => count + 1)}>

 count is {count}

 </button>

 <div>

 <button type="button" onClick={openSimplicityEmbed}>Open</button>

 </div>

 <div>

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 <button type="button" onClick={closeSimplicityEmbed}>Close</button>

 </div>

 <div>

 <button type="button" onClick={sendCommand}>Send Command</button>

 </div>

 <div>

 <button type="button" onClick={changeConfig}>Change Config</button>

 </div>

 <p>

 Edit <code>src/App.tsx</code> and save to test HMR

 </p>

 </div>

 <p className="read-the-docs">

 Click on the Vite and React logos to learn more

 </p>

 <SimplicityEmbed

 setup={seSetup}

 id="simplicity"

 ref={seRef}

 data-icon="heart"

 data-count="7"

 data-color="rgb(245, 241, 5)"

 data-background="rgb(58,85,156)"

 data-heading="Rate Me!"

 onSbnotify={handleSbNotify}>

 </SimplicityEmbed>

 </>

)

}

export default App

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Concepts Demonstrated
There are three methods available to the Simplicity Embed™ web component's host: open,

close, and sendMessage. Clicking the open or close button in the sample above simply opens

or closes the component. The sendMessage method is a way for your widget to accept custom

commands and information from the web component's host. In the case of this demo the

widget example accepts an object with an "action" property with a value "spin". This object

can be anything you want.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The "Change Config" button changes the value of the 'seSetup" variable that is bound to the

"setup" property on the Simplicity Embed™ component. The component has a watcher on that

attribute which will reload the new configuration file and determine any custom attributes that

need to be passed to the defined widget in that configuration file.

The widget can communicate to the host page and the Simplicity Embed™ web component as

well.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Inside the example vanilla JavaScript widget example the event handler for the "SUBMIT"

button sends a postMessage to its parent's window. The Simplicity Embed™ web component

receives this message and as long as the object sent does not have a reserved property name,

it passes the object as an "sbnotify" event to the host page.

In the case of the example widget the submit button gathers the rating selected as well as the

text placed in the text box and sends it with the object.

Here is the code in the widget:

submitBtn.addEventListener("click", function(e) {

 e.stopPropagation();

 const getMessage = document.getElementById("message");

 let outMessage = "";

 if (getMessage) {

 outMessage = getMessage.value;

 }

 console.log(chosenIcons);

 console.log(outMessage);

 let outRating = 0

 for (let x = 0; x < chosenIcons.length; x++) {

 if (chosenIcons[x] == true) {

 outRating++;

 }

 }

 let sendObject = {

 "command": "rating",

 "rating": outRating,

 "maxRating": chosenIcons.length,

 "message": outMessage,

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

Inside the host page the handler for sbnotify snippet is here:

function handleSbNotify(event: CustomEvent) {

 console.log("I received a notify event");

 console.log(event.detail);

 }

The received object (shown in the console log) will look like this:

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

{

 "command": "rating",

 "rating": 6,

 "maxRating": 7,

 "message": "Because this page is great!",

 "id": "simplicity"

}

Sending the info request to the Simplicity Embed™ web component requires you to do a

postMessage to the widget's parent window with an object that contains the property "cmd"

with a value "info" as shown here:

infoBtn.addEventListener("click", function(e) {

 let sendObject = {

 "cmd": "info",

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

The Simplicity Embed™ web component will respond by doing a postMessage that you can

listen for that will contain an object with a variety of information about the Simplicity Embed™

web component's host such as parent dimensions, page dimensions, host, etc.

You need to have an event listener defined in your widget that listens for the message event on

your window object as shown here:

//listen for component host messages/commands

 window.addEventListener("message", (event) => {

 if (event.data.action) {

 switch(event.data.action) {

 case "spin":

 init();

 const icon = document.getElementById("icon");

 icon.classList.remove("spin");

 const myParent = icon.closest("div");

 const inHTML = myParent.innerHTML;

 myParent.innerHTML = inHTML;

 const icon2 = document.getElementById("icon");

 icon2.classList.add("spin");

 break;

 }

 }

 if (event.data.cmd) {

 if (event.data.cmd == "info") {

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 console.log("INFO RECEIVED");

 console.log(event.data);

 }

 }

 });

An example of a returned object from the info request is shown here:

{

 "cmd": "info",

 "info": {

 "tagName": "MAIN",

 "clientHeight": 496,

 "clientWidth": 944,

 "paddingTop": "",

 "paddingRight": "",

 "paddingBottom": "",

 "paddingLeft": "",

 "htmlHeight": 668,

 "htmlWidth": 960,

 "href": "http://localhost:61323/",

 "host": "localhost:61323",

 "hostname": "localhost",

 "pathname": "/"

 }

}

You can use this information to position your widget, animate it, limit it to specific hosts, etc.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

Vue Example
Start a new Vite-powered Vuejs project

npm create vue@latest

Need to install the following packages:

 create-vue@3.9.1

Ok to proceed? (y)

Vue.js - The Progressive JavaScript Framework

√ Project name: ... simplicity-embed-vuejs-example

√ Add TypeScript? ... No / Yes

√ Add JSX Support? ... No / Yes

√ Add Vue Router for Single Page Application development? ... No / Yes

√ Add Pinia for state management? ... No / Yes

√ Add Vitest for Unit Testing? ... No / Yes

√ Add an End-to-End Testing Solution? » No

√ Add ESLint for code quality? ... No / Yes

Scaffolding project in D:\simplicity-embed-vuejs-example...

Done. Now run:

 cd simplicity-embed-vuejs-example

 npm install

 npm run dev

Install the Simplicity Embed™ component:

npm install @simplicitywebtools/simplicity-embed-vue

Modify the App.vue file as follows:

<script setup lang="ts">

import HelloWorld from './components/HelloWorld.vue'

import TheWelcome from './components/TheWelcome.vue'

import { ref } from 'vue'

import {SimplicityEmbed} from '@simplicitywebtools/simplicity-embed-vue/lib'

const seSetup = ref('http://localhost:5500/config.json')

const seRef = ref<HTMLSimplicityEmbedElement | null>(null);

function openSimplicityEmbed() {

 seRef.value?.$el.open()

}

 function closeSimplicityEmbed() {

 seRef.value?.$el.close();

 }

 function sendCommand() {

mailto:create-vue@3.9.1

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 const sendObj = {

 "action": "spin"

 }

 seRef.value?.$el.sendMessage(sendObj);

 }

 function changeConfig() {

 seSetup.value = "http://localhost:5500/config2.json";

 }

 function handleSbNotify(event: CustomEvent) {

 console.log("I received a notify event");

 console.log(event.detail);

 }

</script>

<template>

 <header>

 <div class="wrapper">

 <HelloWorld msg="You did it!" />

 </div>

 </header>

 <main>

 <TheWelcome />

 <div>

 <button type="button" @click="openSimplicityEmbed">Open</button>

 </div>

 <div>

 <button type="button" @click="closeSimplicityEmbed">Close</button>

 </div>

 <div>

 <button type="button" @click="sendCommand">Send Command</button>

 </div>

 <div>

 <button type="button" @click="changeConfig">Change Config</button>

 </div>

 <simplicity-embed

 :setup="seSetup"

 ref="seRef"

 id="simplicity"

 data-icon="heart"

 data-count="7"

 data-color="rgb(245, 241, 5)"

 data-background="rgb(58,85,156)"

 data-heading="Rate Me!"

 @sbnotify="handleSbNotify">

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 </simplicity-embed>

 </main>

</template>

<style scoped>

header {

 line-height: 1.5;

}

.logo {

 display: block;

 margin: 0 auto 2rem;

}

@media (min-width: 1024px) {

 header {

 display: flex;

 place-items: center;

 padding-right: calc(var(--section-gap) / 2);

 }

 .logo {

 margin: 0 2rem 0 0;

 }

 header .wrapper {

 display: flex;

 place-items: flex-start;

 flex-wrap: wrap;

 }

}

</style>

Concepts Demonstrated
There are three methods available to the Simplicity Embed™ web component's host: open,

close, and sendMessage. Clicking the open or close button in the sample above simply opens

or closes the component. The sendMessage method is a way for your widget to accept custom

commands and information from the web component's host. In the case of this demo the

widget example accepts an object with an "action" property with a value "spin". This object

can be anything you want.

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

The "Change Config" button changes the value of the 'seSetup" variable that is bound to the

"setup" property on the Simplicity Embed™ component. The component has a watcher on that

attribute which will reload the new configuration file and determine any custom attributes that

need to be passed to the defined widget in that configuration file.

The widget can communicate to the host page and the Simplicity Embed™ web component as

well.

Inside the example vanilla JavaScript widget example the event handler for the "SUBMIT"

button sends a postMessage to its parent's window. The Simplicity Embed™ web component

receives this message and as long as the object sent does not have a reserved property name,

it passes the object as an "sbnotify" event to the host page.

In the case of the example widget the submit button gathers the rating selected as well as the

text placed in the text box and sends it with the object.

Here is the code in the widget:

submitBtn.addEventListener("click", function(e) {

 e.stopPropagation();

 const getMessage = document.getElementById("message");

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 let outMessage = "";

 if (getMessage) {

 outMessage = getMessage.value;

 }

 console.log(chosenIcons);

 console.log(outMessage);

 let outRating = 0

 for (let x = 0; x < chosenIcons.length; x++) {

 if (chosenIcons[x] == true) {

 outRating++;

 }

 }

 let sendObject = {

 "command": "rating",

 "rating": outRating,

 "maxRating": chosenIcons.length,

 "message": outMessage,

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

Inside the host page the handler for sbnotify snippet is here:

function handleSbNotify(event: CustomEvent) {

 console.log("I received a notify event");

 console.log(event.detail);

 }

The received object (shown in the console log) will look like this:

{

 "command": "rating",

 "rating": 6,

 "maxRating": 7,

 "message": "Because this page is great!",

 "id": "simplicity"

}

Sending the info request to the Simplicity Embed™ web component requires you to do a

postMessage to the widget's parent window with an object that contains the property "cmd"

with a value "info" as shown here:

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

infoBtn.addEventListener("click", function(e) {

 let sendObject = {

 "cmd": "info",

 id: myId

 };

 window.parent.postMessage(sendObject, "*");

 });

The Simplicity Embed™ web component will respond by doing a postMessage that you can

listen for that will contain an object with a variety of information about the Simplicity Embed™

web component's host such as parent dimensions, page dimensions, host, etc.

You need to have an event listener defined in your widget that listens for the message event on

your window object as shown here:

//listen for component host messages/commands

 window.addEventListener("message", (event) => {

 if (event.data.action) {

 switch(event.data.action) {

 case "spin":

 init();

 const icon = document.getElementById("icon");

 icon.classList.remove("spin");

 const myParent = icon.closest("div");

 const inHTML = myParent.innerHTML;

 myParent.innerHTML = inHTML;

 const icon2 = document.getElementById("icon");

 icon2.classList.add("spin");

 break;

 }

 }

 if (event.data.cmd) {

 if (event.data.cmd == "info") {

 console.log("INFO RECEIVED");

 console.log(event.data);

 }

 }

 });

An example of a returned object from the info request is shown here:

{

 "cmd": "info",

 "info": {

 "tagName": "MAIN",

 "clientHeight": 496,

 Simplicity Embed™ Reference Manual – Version 1.0, 2/19/2024

 "clientWidth": 944,

 "paddingTop": "",

 "paddingRight": "",

 "paddingBottom": "",

 "paddingLeft": "",

 "htmlHeight": 668,

 "htmlWidth": 960,

 "href": "http://localhost:61323/",

 "host": "localhost:61323",

 "hostname": "localhost",

 "pathname": "/"

 }

}

You can use this information to position your widget, animate it, limit it to specific hosts, etc.

